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Abstract
A fundamental question in social choice and multi-
agent systems is aggregating ordinal preferences
expressed by agents into a measurably prudent col-
lective choice. A promising line of recent work
views ordinal preferences as a proxy for underlying
cardinal preferences. It aims to optimize distortion,
the worst-case approximation ratio of the (utilitar-
ian) social welfare. When agents rank the set of al-
ternatives, prior work identifies near-optimal voting
rules for selecting one or more alternatives. How-
ever, ranking all the alternatives is prohibitive when
there are many alternatives.
In this work, we consider the setting where each
agent ranks only her t favorite alternatives and
identify almost tight bounds on the best possible
distortion when selecting a single alternative or a
committee of alternatives of a given size k. Our re-
sults also extend to approximating higher moments
of social welfare. Along the way, we close a gap
left open in prior work by identifying asymptoti-
cally tight distortion bounds for committee selec-
tion given full rankings.

1 Introduction
A common task in multi-agent systems is to make collec-
tive decisions that serve multiple agents well in a mea-
surable sense, and voting is a frequently-used tool for
this purpose [Shoham and Leyton-Brown, 2008; Pitt et al.,
2006], in applications such as human computation [Pro-
caccia et al., 2012], distributed sensor networks [Lesser et
al., 2003], meeting scheduling [Haynes et al., 1997], plan-
ning [Ephrati and Rosenschein, 1997], and rank aggregation
for the web [Dwork et al., 2001].

Voting has been studied for centuries in social choice the-
ory, dating back to the early work by Condorcet [1785], in
which voters rank candidates, and the goal is to select one or
more candidates. But the prominent approach for evaluating
the efficacy of voting rules has been the axiomatic approach,
which is more qualitative in nature and has resulted in cele-
brated impossibility results [Arrow, 1951]. Arguably, this has
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led to a lack of consensus, even among social choice theorists,
on which voting rules are the “best”.

A recent wave of interest in voting from computer sci-
ence has provided a fundamentally new perspective for quan-
titatively evaluating voting rules. Procaccia and Rosen-
schein [2006] propose to view the ranked preferences sub-
mitted by voters over candidates as proxies for their underly-
ing numerical utility functions. This assumption allows one
to focus on a canonical quantitative goal: maximizing the
(utilitarian) social welfare [Bentham, 1780]. They propose
to judge voting rules by their distortion, the worst-case ap-
proximation ratio between the maximum possible social wel-
fare given complete utility functions and the (expected) so-
cial welfare achieved by the voting rule given only the partial
preference information. Hence, distortion is the “price” of
missing information and acts as a yardstick for answering the
age-old question: Which voting rules are the best?

Boutilier et al. [2015] identify a near-optimal randomized
voting rule for selecting a single candidate given ranked pref-
erences of voters. Caragiannis et al. [2017] extend their anal-
ysis to deterministic and randomized rules for selecting a
committee of candidates of a given size k. Since then, the
distortion literature has proliferated and the idea has been ap-
plied to settings even beyond voting; we refer the reader to
the recent survey by Anshelevich et al. [2021] for a detailed
overview of the results.

Of particular interest to us is the observation that once we
surmise the existence of underlying utility functions, we do
not need to stick with asking voters to rank candidates. As
Benade et al. [2021] observe, distortion can be used to eval-
uate and compare different elicitation formats (i.e., ballot de-
signs). Mandal et al.; Mandal et al. [2019; 2020] stretch
this to the extreme, allowing arbitrary elicitation formats and
studying the tradeoff between the number of bits they extract
from each voter and the distortion they enable. However, this
can lead to unintuitive elicitation formats, which may be dif-
ficult for humans to answer.

Another line of work focuses on intuitive elicitation for-
mats that are either more expressive than ranked prefer-
ences [Amanatidis et al., 2021] or less expressive [Gross et
al., 2017; Kempe, 2020b; Halpern and Shah, 2021]. A com-
mon less expressive format is top-t preferences, where each
voter ranks only her t most favorite candidates, instead of
ranking all candidates. This is particularly well-suited in ap-



plications where we have far too many candidates to choose
from [Procaccia et al., 2012]. Kempe [2020b] studies the dis-
tortion under this type of preferences in the metric framework,
where voters have costs rather than utilities. In this paper, our
main goal is to study distortion with top-t preferences under
the original utilitarian framework.

1.1 Our Results
We consider selecting a committee of a given size k given
top-t preferences of the voters over the candidates, under the
model in which a voter’s utility for a committee is her maxi-
mum utility for any candidate in the committee. We consider
approximating not only the social welfare but, more gener-
ally, the p-th power of the social welfare for p > 1, as ad-
vocated by Fain et al. [2020]. As described in Section 2, the
results of Caragiannis et al. [2017] can be used to immedi-
ately settle this question for deterministic voting rules; hence,
we focus exclusively on randomized rules in this work.

For single-winner selection (k = 1), we identify nearly-
tight distortion bounds for all p > 1. We show that the best
distortion is Op

(
min

(
m,max

(
(log t ·m)p/p+1, (m/t)

p))),
and this is tight up to the log t factor in it. For p = 1,
we are able to eliminate the log t factor and prove a tight
bound of Θ(max(

√
m,m/t)) using a technique introduced re-

cently [Ebadian et al., 2022].
For committee selection (k > 1) with the first mo-

ment (p = 1), we are able to extend the aforemen-
tioned single-winner selection bound to an upper bound of
O (min (m/k,max (

√
m,m/t))). For the case of full rankings

(t = m), this matches the lower bound due to Caragiannis
et al. [2017] and closes a gap of m1/6 in their loose upper
bound, giving a tight bound of Θ(min(m/k,

√
m)) and re-

solving the question of optimal distortion bounds for com-
mittee selection with ranked preferences. The lower bound of
Caragiannis et al. [2017] continues to match our upper bound
when k >

√
m (with arbitrary t) or k 6

√
m 6 t. However,

when k, t 6
√
m, our lower bound of Ω(max(

√
m,m/kt)) is

weaker than our upper bound of O(m/max(k,t)). A visualiza-
tion of these bounds is presented in the appendix.

Finally, we extend the committee selection (k > 1 bounds
to higher moments (p > 1), but in this case, we leave open
substantial gaps. In the appendix, we also present encour-
aging preliminary results for single-winner selection with
higher moments in the metric framework.

1.2 Related Work
To the best of our knowledge, the only work that comes close
to studying distortion under top-t preferences in the utilitar-
ian framework is that of Mandal et al. [2019]. They propose
a voting rule, PREFTHRESHOLD, which asks voters to report
the set of their t most preferred candidates along with their
approximate utilities for these candidates, by partitioning the
utility space into discrete buckets and asking the voters to
identify the appropriate buckets. Their distortion bound is
only comparable to ours when their rule uses a single bucket,
for which their bound is infinite.

In the metric framework, distortion under top-t preferences
is better understood. For single-winner selection (k = 1) with
the first moment (p = 1), Kempe; Kempe [2020b; 2020a]

proves a lower bound of (2m − t)/t and an asymptotically
matching upper bound of 12m/t. Recently, Anagnostides et
al. [2021] improve the upper bound to 6m/t and show that
this can be further improved to (4m− t)/t if a generalization
of a combinatorial lemma due to Gkatzelis et al. [2020] holds.

While top-t preferences are relatively less explored in the
distortion setting, they are very well studied more broadly in
voting [Oren et al., 2013; Lee et al., 2014; Lu and Boutilier,
2011; Filmus and Oren, 2014] and in settings beyond vot-
ing [Drummond and Boutilier, 2013; Hosseini et al., 2021].

Finally, following Caragiannis et al. [2017], we use the
model where the utility of a voter for a committee is her max-
imum utility for any candidate in the committee. This is in the
style of common voting rules such as the Chamberlin-Courant
rule and the Monroe rule (see [Lang and Xia, 2016] for defi-
nitions), which aim to select committees in which every voter
has a candidate representing her. An alternative model would
be to model the utility of a voter for a committee as the sum
of her utilities for the candidates in the committee, which has
also been considered in the literature [Benade et al., 2021].

2 Preliminaries
For t ∈ N, define [t] = {1, . . . , t}. Let V = [n] be a set
of n voters and C be a set of m candidates. We use indices
i, j to denote voters and letters a, b, c to denote candidates. A
committee is a subset of candidates. In this work, we consider
selecting a committee of a given size k ∈ [m]. Let Pk(C)
denote the set of all committees of size k. When k = 1, we
refer to it as single winner selection.

Voter utilities: Each voter i has a utility ui(c) ∈ R>0

for every candidate c; we assume the standard normalization
that

∑
c∈C ui(c) = 1 for every i [Aziz, 2020]. We refer

to u = (u1, . . . , un) as the utility profile. For a committee
X ∈ Pk(C), we define, with slight abuse of notation, the
utility of voter i for X as ui(X) = maxc∈X ui(c). This is
a standard extension studied in the literature [Caragiannis et
al., 2017], whereby a voter cares about having some represen-
tative in the committee that they like. The (utilitarian) social
welfare of X is then given by sw(X,u) =

∑n
i=1 ui(X); for

X = {c}, we simply write sw(c, u). When the utilities are
clear from context, we may drop them from the notation and
simply write sw(X) or sw(c).

Preference profile: We do not directly observe voters’ un-
derlying utility functions. Instead, we ask each voter i to
submit a ranking of her t most preferred candidates, de-
noted by a one-to-one function σi : [t] → C satisfying
ui(σi(1)) > . . . > ui(σi(t)) > ui(c) for all c ∈ C \ σi([t]).
We allow the voter to break any ties arbitrarily. We refer to
σ = (σ1, . . . , σn) as the preference profile. We use u . σ to
denote that preference profile σ is induced from the underly-
ing utility profile u.

Voting rule: A (randomized) voting rule f takes as input
a preference profile σ and outputs a distribution f(σ) over
committees of size k. We say that the voting rule is determin-
istic if it always returns a distribution with singleton support,
in which case we use f(σ) to denote the unique committee of
size k in the support.



Distortion: An instance I in this model is given by the tuple
(V,C, u). When evaluating distortion, we fix the number of
candidates m. Let I denote the set of all instances with m
candidates. Fix p ∈ N>0. Following Fain et al. [2017] and
Fain et al. [2020], the p-th moment distortion of voting rule f
on an instance I = (V,C, u) is given by

distp(f, I) = sup
σ:u.σ

maxY ∈Pk(C)[sw(Y, u)]p

EX∼f(σ)[(sw(X,u))p]
.

The p-th moment distortion of f is obtained by taking the
worst case over all instances: distp(f) = supI∈I distp(f, I).

Note that for deterministic rules, since there is no expec-
tation in the denominator, the choice of p does not affect the
distortion as it cancels out; hence, analyzing p = 1 is suf-
ficient. For p = 1, Caragiannis et al. [2017] prove that a
deterministic rule achieves distortion 1 + m(m − k)/k even
with t = 1, and no deterministic rule can be asymptotically
better even when t = m. Hence, this provides asymptotically
optimal distortion bounds for all values of t, k, and p. Con-
sequently, in this work, we focus exclusively on randomized
voting rules.

3 Single Winner Selection
Let us begin by analyzing the distortion for single winner se-
lection given top-t preferences. Given only plurality votes
(t = 1), it is known that the best possible distortion is m,
which can be achieved by selecting a uniformly random can-
didate (see, e.g. [Mandal et al., 2019, Proposition 1]). On
the other hand, given ranked preferences (t = m), Boutilier
et al. [2015] pinpoint the optimal distortion to be between
O(
√
m · log∗m) and Ω(

√
m), and Ebadian et al. [2022] close

this gap to establish a Θ(
√
m) bound.

In this section, we fill the gap between these two extremes.
We show that the optimal distortion for top-t preferences is
Θ(max(m/t,

√
m)). Hence, it first decreases from m to

Θ(
√
m) as ` increases from 1 to Θ(

√
m), but then remains

Θ(
√
m) as ` increases further. In a sense, this shows that

after eliciting the top-Θ(
√
m) preferences of the voters, elic-

iting the rest of their preference ranking does not significantly
help. Our analysis extends to the p-th moment with a loga-
rithmic gap when p > 1.

3.1 Upper Bound
For ranked preferences, Boutilier et al. [2015] show that
a simple rule achieves O(

√
m logm) distortion, which is

only logarithmically worse than the optimal distortion. They
define the harmonic score of candidate a as hsc(a) =∑
i

1/σ−1
i (a); that is, candidate a gets 1/r points whenever it

appears in the r-th position in a voter’s preference ranking.
Then, their rule chooses each candidate a with probability
1
2

hsc(a)∑
b hsc(b) + 1

2
1
m .

We show that a natural extension of this rule to top-`
preferences achieves near-optimal distortion simultaneously
for all p. We define the truncated harmonic score of can-
didate a, whereby the candidate still gets 1/r points when-
ever it appears in the r-th position for r 6 t, but gets zero
points if it does not appear in the top t positions; that is,

hsct(a) =
∑
i:a∈σi([t])

1/σ−1
i (a). Then, our rule, fh, chooses

every candidate a with probability 1
2

hsct(a)∑
b hsct(b)

+ 1
2

1
m .

Theorem 1. For all p > 1 and t ∈ [m], we have that

distp(fh) 6 2 min

(
m,

p

W (p)
max

(
(Ht ·m)

p
p+1 ,

(m
t

)p))
.

Here, Ht =
∑t
r=1

1
r = Θ(log t) is the t-th harmonic number

and W (p) = Θ(log p) is the solution of W (p)eW (p) = p.1

Proof. Fix an arbitrary instance I = (V,C, u) with top-t
preference profile σ = (σ1, . . . , σn) induced by u. Fix an
optimal candidate a ∈ arg maxc∈C sw(c). Let qc be the prob-
ability by which fh chooses candidate c on this profile.

We will show two separate upper bounds on the welfare ap-
proximation ratio sw(a)p∑

c∈C qc·sw(c)p ; then, taking the minimum
of the two ratios yields the bound stated in the theorem.

First, an upper bound of 2m follows directly from the fact
that qa > 1/(2m). Hence,

sw(a)p∑
c∈C qc · sw(c)p

6
sw(a)p

qa · sw(a)p
=

1

qa
6 2m.

For the second upper bound, we consider two cases de-
pending on the truncated harmonic score hsct(a) of the opti-

mal candidate a. Fix τ = W (p)
p ·

(
Ht

mp

)1/(p+1)
. We consider

hsct(a) > nτ and hsct(a) < nτ , and show that the desired
upper bound holds in both cases.

Case 1: First, suppose hsct(a) > nτ . We have that

qa >
1

2
· hsct(a)∑

c∈C hsct(c)
=

1

2
· hsct(a)

nHt
>

τ

2Ht
.

Hence, by the same argument as above, the welfare approxi-
mation ratio is at most

1

qa
6

2Ht

τ
=

2p

W (p)
· (Ht ·m)

p
p+1

6
2p

W (p)
·max

(
(Ht ·m)

p
p+1 ,

(m
t

)p)
.

Case 2: Next, suppose hsct(a) < nτ . Note that the utility
of voter i for a is at most 1/r if the voter ranks a in the r-th
position, for some r 6 t, and at most 1/t otherwise. Hence,

sw(a) 6 hsct(a) + n/t 6 n · (τ + 1/t).

The expected social welfare when picking a uniformly ran-
dom candidate is n/m, which implies that, by Jensen’s in-
equality, the expected p-th moment of social welfare is at least
(n/m)p. Since our rule fh implements this with probability
1/2, we have

∑
c∈C qc · sw(c)p > (1/2) · (n/m)p. Together,

1This is known as the Lambert W function.



these imply that

sw(a)p∑
c∈C qc · sw(c)p

6
np · (τ + 1/t)p

(1/2) · (n/m)p

= 2 · (mτ +m/t)p

= 2 ·
(
(W (p)/p) · (Ht ·m)

1
p+1 +

m

t

)p
6 2 · (1 + W (p)/p)p ·max

(
(Ht ·m)

1
p+1 ,

m

t

)p
6 2 · eW (p) ·max((Ht ·m)

p
p+1 , (m/t)p)

=
2p

W (p)
·max((Ht ·m)

p
p+1 , (m/t)p).

Combining this with Case 1 yields the desired bound.

For p = 1, this bound is O(max(
√
m log t,m/t)). In this

special case, we can eliminate the
√

log t factor by extending
a recent technique due to Ebadian et al. [2022]. This follows
from a more general result presented in Section 4.
Proposition 1. For t ∈ [m] and p = 1, there exists a ran-
domized rule whose distortion is O(max(

√
m,m/t)).

3.2 Lower Bound
Next, we show that the bound achieved in the previous sub-
section is tight up to the (log t)p/(p+1) factor. For p = 1,
the following lower bound is Ω(max(

√
m,m/t)), precisely

matching the upper bound from Proposition 1. The proof of
the following result, along with the other missing proofs, can
be found in the appendix.
Theorem 2. Fix constant p > 1. Every randomized rule f
for selecting a single winner given top-t preferences has

distp(f) = Ω
(

min
(
m,max

(
m

p
p+1 ,

(m
t

)p)))
.

4 Committee Selection for the First Moment
We now turn our attention to selecting a committee of size k
for k > 1 given top-t preferences. In this section, we focus on
the first moment (p = 1), for which we are able to derive tight
distortion bounds. The next section focuses on committee
selection with higher moments (p > 1), for which our bounds
are not tight.

4.1 Upper Bound
In order to derive the upper bound, we extend a recent ap-
proach introduced by Ebadian et al. [2022]. They use it to
derive an optimal Θ(

√
m) bound for single-winner selection

(k = 1) given full rankings (t = m). We extend this to all
k, t ∈ [m].

The approach relies on another recent result due to Cheng
et al. [2020]. They consider randomized committee selection
that satisfies a compelling stability/fairness property. For a
pair of committees S, S′ ⊆ C, we say that S′ �i S if voter
i ranks her most preferred candidate in S′ above her most
preferred candidate in S. Let V (S, S′) = {i ∈ V : S′ �i S}.
Definition 1 (Stable Lotteries). Fix ` ∈ [m]. A distribution
S over committees of size ` is said to be stable if, for every
committee S′ with |S′| 6 `, we have ES∼S[|V (S, S′)|] 6
n · |S′|/`.

Note that when a committee S is sampled from a stable lot-
tery S, the fraction of voters preferring any other fixed com-
mittee S′ over S is bounded, in expectation, by the ratio of
the sizes of S′ and S. In other words, a small committee can-
not be preferred by many voters. It is worth noting that if the
property is satisfied for all S′ with |S′| = 1, then it is satisfied
for all S′ with |S′| 6 ` (see [Cheng et al., 2020]).
Theorem 3 (Cheng et al. [2020]). Given ranked preferences
and ` ∈ [m], a stable lottery over committees of size ` always
exists.

We note that Cheng et al. [2020] also provide a
poly(m`, 1/ε) time algorithm to compute an ε-approximately
stable lottery. Using that in our analysis only affects the dis-
tortion bound by a factor of 1 + ε. For simplicity, we work
with exactly stable lotteries.

Given ranked preferences, Ebadian et al. [2022] show that
if S is a stable lottery over committees of size ` =

√
m,

then picking a candidate uniformly at random from a com-
mittee S ∼ S with probability 1/2 and picking a uniformly
random candidate from C with probability 1/2 yields distor-
tion O(

√
m) for single-winner selection with p = 1.

We want to extend this to select a committee of size k given
only top-t preferences. Our rule, fmix, is a combination of
two rules.

• f unif picks a uniformly random committee U of size k.
• f stable arbitrarily completes the partial preference profile

into a ranked preference profile, finds a stable lottery S
committees of size k

√
m, samples S ∼ S, and then picks

a uniformly random subset S′ ⊆ S of size k.
If k >

√
m, fmix applies f unif. Otherwise, it applies f stable

with probability 1/2 and f unif with probability 1/2.
Note that while Ebadian et al. [2022] use a stable lottery

over committees of size
√
m to pick a single candidate, f stable

uses a stable lottery over committees of size k
√
m to pick

a committee of size k. While this approach does not work
when k >

√
m (since then k

√
m > m), that case turns out

to be rather easy to address. Finally, note that we are able to
handle the partial top-t preferences by simply extending them
arbitrarily to complete ranked preferences!
Theorem 4. For all k, t ∈ [m], we have that

dist(fmix) 6 min

(
2m

k
, 4 max

(m
t
,
√
m
))

.

Proof. We prove two separate upper bounds of 2m/k and
4 max(m/t,

√
m) on dist(fmix). Fix an arbitrary instance

(V,C, u) with top-t preference profile σ induced by u. Let
D = fmix(σ) be the distribution return by our rule, and
qa = PrS∼D[a ∈ S] be the marginal probability of candidate
a being included in the chosen committee. Fix an optimal
committee S∗ ∈ arg maxS∈Pk(C) sw(S).

First bound: Since fmix executes f unif with probability at least
1/2, we have that qa > k/(2m) for all a ∈ C. Hence,
we have ES∼D[sw(S, u)] > (k/(2m)) · sw(S∗). Rearrang-
ing yields the desired distortion bound.

Second bound: Our desired bound is 4 max(m/t,
√
m). We

assume k 6
√
m, otherwise 2m/k is already a stronger



bound. Let σ̂ denote the arbitrarily completed ranked prefer-
ence profile, and let S be the stable lottery computed in f stable

for σ̂. Fix a committee S in the support of S. Let us partition
the set of voters V into three:

• V (S, S∗) includes every voter i for whom S∗ �i S un-
der σ̂. From Definition 1, ES∼S[|V (S, S∗)|] 6 n/

√
m.

• G(S∗, S) includes every voter i for whom S �i S∗ and
she ranks her favorite candidate from S in the first t po-
sitions. This guarantees ui(S) > ui(S

∗).

• N(S∗, S) includes every voter i for whom S �i S∗ but
she ranks her favorite candidate from S after the first t
positions. In this case, ui(S∗) 6 1/t.

Now, we have

sw(S∗, u)

=
∑

i∈V (S,S∗)

ui(S
∗) +

∑
i∈N(S,S∗)

ui(S
∗) +

∑
i∈G(S,S∗)

ui(S
∗)

6 |V (S, S∗)| · 1 + n · (1/t) +
∑

i∈G(S,S∗)

ui(S)

6 |V (S, S∗)|+ n/t+ sw(S, u).

Next, we take the expectation over S ∼ S.

sw(S∗, u) 6
n√
m

+
n

t
+ ES∼S[sw(S, u)]

6
2n

min(
√
m, t)

+ ES∼S[sw(S, u)]. (1)

Let W1 be the expected social welfare under f unif and W2

be the expected social welfare under f stable. The expected
social welfare under fmix is (W1 + W2)/2. We express the
RHS in Equation (1) in terms of W1 and W2.

First, Caragiannis et al. [2017] argue that W1 is at least
n/m. Next, consider S′ ⊆ S of size |S′| = k cho-
sen uniformly at random. For each voter i, her most fa-
vorite candidate in S is included in S′ with probability
|S′|/|S| = 1/

√
m. Hence, ES′ [ui(S′)] > ui(S)/

√
m. Sum-

ming over all voters and taking the expectation over S ∼
S, W2 = ES,S′ [sw(S′, u)] > ES [sw(S, u)]/

√
m. Hence,

ES [sw(S, u)] 6
√
m ·W2.

Plugging these into Equation (1), we get

sw(S∗, u) 6
2m ·W1

min(
√
m, t)

+
√
m ·W2

6 2 max(
√
m,m/t) · (W1 +W2),

which yields the desired distortion bound of
4 max(

√
m,m/t) upon rearranging.

4.2 Lower Bound
We now turn our attention to lower bounds. Cara-
giannis et al. [2017] already prove a lower bound of
Ω(min(m/k,

√
m)) that holds even with fully ranked pref-

erences (t = m), which obviously holds for all t 6 m. This
matches the upper bound from Theorem 4 when k >

√
m or

when k 6
√
m 6 t. In the remaining region of k, t 6

√
m,

the upper bound from Theorem 4 is O(min(m/k,m/t)); for

this case, we are able to establish a weaker lower bound
of Ω(m/(kt)). These bounds are illustrated in Figure 1 in
the appendix. We do not provide a separate proof of the
Ω(m/(kt)) lower bound because it is implied by Theorem 6
in the next section.

Proposition 2. Every randomized rule f for selecting a com-
mittee of size k given top-t preferences has

dist(f) = Ω
(

min
(m
k
,max

(m
kt
,
√
m
)))

.

Crucially, note that there is no gap between our upper and
lower bounds when k = O(1), t = O(1), k >

√
m, or k 6√

m 6 t. Particularly, for ranked preferences (t = m), we
derive a tight distortion bound of Θ(min(m/k,

√
m)), which

was posed as an open question by Caragiannis et al. [2017].
Their upper bound was loose by a factor of O(m1/6). While
our upper bound in Theorem 4 eliminates this completely us-
ing a technique very different from theirs, our upper bound in
the next section would show that even their technique can be
modified to eliminate this factor up to a logarithmic term.

5 Committee Selection for Higher Moments
Finally, we consider the p-th moment distortion, with p >
1, for selecting a committee of size k given top-t prefer-
ences. Unfortunately, the ingenious approach of Ebadian et
al. [2022] to utilize stable lotteries to bound distortion seems
to break down for higher moments. The problem is that hav-
ing a committee sampled from such a lottery well approxi-
mate the optimal committee with respect to the p-th moment
of the social welfare forces us to use a lottery over committees
larger than kt, but this reduces the performance of subsam-
pling of a committee of size k from such large committees,
resulting in unappealing distortion bounds.

In contrast, we prove that the approach of Caragiannis et
al. [2017], which extends the harmonic score based approach
of Boutilier et al. [2015], continues to work reasonably well
for higher moments. In doing so, we identify and improve
upon a suboptimal step in their approach. For p = 1 and
t = m, this is what reduces their m1/6 gap to a logarithmic
gap, as mentioned above.

5.1 Upper Bound
Let us define our harmonic score based rule fhc for com-
mittee selection. The rule is independent of p. Given a
top-t preference profile σ, the rule works as follows. With
probability 1/2, it picks a uniformly random committee of
size k. With the remaining probability 1/2, it does the
following. First, it computes the truncated harmonic score
hsct(c) of every candidate c, as defined in Section 3. At this
point, Caragiannis et al. [2017] define a marginal probabil-
ity qa = α · (k/m) + (1 − α) · k · (a)∑

c∈C(c) , find α such
that qa 6 1 for all a, and compute a distribution over com-
mittees matching these marginal probabilities (which can be
done efficiently using an extension of the Birkhoff-von Neu-
mann theorem due to Budish et al. [2013]). Instead, we com-
pute a distribution over committees such that the marginal
probability of each candidate a being included is at least



qa = min(k · hsct(a)∑
c∈C hsct(c)

, 1). It can be shown that this is
always feasible (indeed,

∑
a∈C qa 6 k and qa ∈ [0, 1] for all

a) and efficiently computable. This change in the marginal
probabilities allows us to improve upon their bounds.

Theorem 5. For all p > 1 and k, t ∈ [m], we have that

distp(fhc) 6 2·min

((
m

k

)
, m · kp−2 ,

4p ·max
(

(Ht ·m · kp−1)
p

p+1 ,
(m
t

)p))
.

5.2 Lower Bounds

Next, we establish two lower bounds via different proof
methodologies. The first bound is achieved using a more
straightforward analysis.

Theorem 6. Fix constant p > 1. Every randomized rule f
for selecting a committee of size k given top-t preferences has

distp(f) = Ω
(

min
(m
k
,
(m
kt

)p))
.

The next bound requires a more intricate analysis; a proof
sketch is presented below.

Theorem 7. Fix constant p > 1. Every randomzied rule f
for selecting a committee of size k given top-t preferences has

distp(f) =

{
Ω
(
kΘ(p)

)
, if k = O(

√
m),

Ω
((

m−k
k

)p)
, if k = Ω(

√
m logm).

Proof sketch. At a high level, the proof works as follows. We
construct a simple profile with n = m voters, each rank-
ing a different candidate first; the rest of the profile is ar-
bitrary. Further, the utilities are always such that there is a
unique optimal committee S∗. All voters that rank a can-
didate a ∈ S∗ first have utility 1 for a and 0 for the other
candidates; all other voters have utility 1/m for all candi-
dates. Note that under these utilities, S∗ uniquely has the
highest p-th moment social welfare of (k + m−k

m )p. We then
use an averaging argument to claim that regardless of the
distribution picked by the rule on this profile, we can find
some S∗ and its corresponding utility profile so that the rule
only achieves expected p-th moment social welfare of at most

1

(m
k )
·
∑k
h=0

(
k
h

)
·
(
m−k
k−h

)
·
(
h+ m−k

m

)p
. The remainder of the

proof is dedicated to bounding the ratio of these two values.
Namely, we use the Chernoff bounds on binomial random
variables to upper bound the binomial sum. This allows us to
make the following claim: for all c > 2 · k2

m−k , the distortion
is at least

1

2
·min

((
k + 1

c+ 1

)p
, 2c
)
.

The final part of the proof is optimizing the value of c to get
the tightest bound.

6 Discussion
Our work identifies exciting technical open questions. While
we identify tight distortion bounds for single-winner selec-
tion (k = 1), for committee selection (k > 1) with the first
moment (p = 1), there is a gap between our upper bound of
O(m/kt) and our lower bound of O(m/max(k,t)) in the case
where k, t 6

√
m. We remark that in practice, it is common

for k and t to be very small, for which the gap between our
upper and lower bounds is also small (see Figure 1 in the ap-
pendix). We leave more room for improvement in committee
selection with higher moments (p > 1). It would be interest-
ing to close these gaps.

In the appendix, we provide encouraging preliminary re-
sults for the metric distortion framework. We identify tight
distortion bounds for single-winner selection (k = 1) with an
arbitrary moment p, but our bounds for committee selection
are off by a polynomial factor. Closing this gap would also
be of immediate interest.

More broadly, an interesting direction for future work is to
study distortion under other realistic settings and thrifty elici-
tation methods. For example, what is the best possible distor-
tion if we have access to the ranked (or top-t) preferences of
only a subset of randomly sampled voters? What if these vot-
ers are not sampled randomly? What if the preferences of the
voters are not worst case, but instead stochastic (and possibly
correlated)?

Casting an even broader net, the distortion framework
is highly versatile and can shed a new light on quanti-
tatively evaluating the effectiveness of more complex col-
lective decision-making paradigms such as distributed elec-
tions [Filos-Ratsikas et al., 2019], participatory budget-
ing [Benade et al., 2021], and primaries [Borodin et al.,
2019]. An exciting direction for the future is to use this
framework to analyze real-world decision-making paradigms
such as sortition [Flanigan et al., 2021] and liquid democ-
racy [Brill, 2019].
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Appendix
A Summary & Visualization of Our Results
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Table 1: A summary of our asymptotic distortion bounds.

1 k
1

t

√
m

√
m

m

m

Lower bound:
Θ
(
max

(√
m, mkt

))
Upper bound:

m
max(k,t)

Θ (
√
m)

Θ
(
m
k

)

(a) Upper and lower bounds for different values of k and t.

1 k
1

t
√
m

√
m

k
=
t

kt = √
mΘ (t)

Θ (k)

Θ
(√

m
k

)

Θ
(√

m
t

)

(b) Gap factor for t, k 6
√
m.

Figure 1: Visualization of the results for committee selection with the first moment.

B Missing Proofs
B.1 Proof of Theorem 2
Proof. Note that we can rewrite the lower bound as Ω(max(mp/(p+1),min(m, (m/t)p))). Fix an arbitrary rule f . We will
prove two separate bounds: distp(f) = Ω(mp/(p+1)) and distp(f) = Ω(min(m, (m/t)p)).

First bound: Since the first bound is independent of t, we only need to show that it holds even if t = m. Let C ′ ⊆ C be a
subset of the candidates with |C ′| = mp/(p+1).2 We construct a preference profile σ with n = mp/(p+1) voters, where each

2For simplicity, we avoid using floors and ceilings since this does not change the lower bound asymptotically.



voter ranks a unique candidate c ∈ C ′ first (we refer to this voter as ic). The rest of the profile is arbitrarily chosen. Suppose
the rule chooses every candidate c with probability qc. There must exist a ∈ C ′ with qa 6 m−p/(p+1).

Next, set the utility profile u such that for voter ia, we have uia(a) = 1 and uia(c) = 0 for all c 6= a, whereas for every other
voter i, we have ui(c) = 1/m for all c ∈ C. That is, the voter who ranks a first intensely likes a, while the other voters are
indifferent between the candidates. Note that u . σ, sw(a, u) > 1, and sw(c, u) 6 n/m = m−1/(p+1) for all c 6= a. Hence, we
have

sw(a, u)p∑
c∈C qc · sw(c, u)p

>
sw(a, u)p

m−p/(p+1) · sw(a, u)p +
∑
c∈C\{a} qc ·m−p/(p+1)

>
sw(a, u)p

sw(a, u)p + 1
·mp/(p+1) > (1/2) ·mp/(p+1),

where the first transition uses the upper bounds on qa and sw(c, u) derived earlier, while the second transition uses sw(a, u) > 1.

Second bound: Construct a preference profile σ with n = m!
(m−t)! voters, where each voter submits a unique permutation of t

out of m candidates. Suppose f chooses every candidate c with probability qc. There must exist a ∈ C such that qa 6 1/m.
Next, we construct a consistent utility profile u (i.e., with u . σ) as follows. If voter i ranks a at position j 6 t, then we
set ui(c) = 1/j for c ∈ σi([j]) and ui(c) = 0 for all other c. If voter i does not rank a in the top t positions, then we set
ui(c) = 1/(t+ 1) for c ∈ σi([t]) ∪ {a} and ui(c) = 0 for all other c.

Note that due to the symmetry of the construction, a is ranked first in exactly n/m of the votes. In these votes, voters have
utility 1 for a and in all others, voters have utility at least 1/(t+ 1). Hence,

sw(a, u) >
n

m
· 1 +

(
n− n

m

)
· 1

t+ 1
=
n · (m+ t)

m · (t+ 1)
. (2)

By symmetry, all other candidates have the same welfare, so Equation (2) tells us that for all candidates c 6= a,

sw(c, u) =
n− sw(a)

m− 1
6
n− n·(m+t)

m·(t+1)

m− 1
=

n · t
m · (t+ 1)

(3)

Next, using qa 6 1/m, the expected p-th moment of the welfare under f is∑
c∈C

qc · sw(c, u)p 6 2 ·max(qa · sw(a, u)p,
∑
c6=a

qc · sw(c, u)p)

6 2 ·max

(
sw(a, u)p

m
,

(
n · t

m · (t+ 1)

)p)
.

Thus, the approximation ratio is

sw(a, u)p∑
c∈C qc · sw(c, u)p

>
sw(a)p

2 ·max
(

sw(a)p

m ,
(

nt
m(t+1)

)p)
> (1/2) ·min (m, (m/t)

p
) ,

where the last inequality holds due to Equation (2).

B.2 Proof of Theorem 5

Proof. Fix an instance I = (V,C, u) with top-t rankings σ = (σ1, . . . , σn) induced by u. Fix an optimal committee S∗ ∈
arg maxS∈Pk(C) sw(S). Let D = fhc(σ) be the chosen distribution and let pa = PrS∼D[a ∈ S] be the marginal probability
that candidate a is chosen.

The upper bound of 2
(
m
k

)
follows because we choose the optimal committee with probability at least 1/2

(
m
k

)
.

We now show an upper bound of 2 ·m · kp−2. For each a ∈ S∗, let (Na)a∈s∗ be a partition of the voters such that each voter
in Na is receiving maximal utility in S∗ from candidate a, that is, for all i ∈ Na, ui(a) = ui(S

∗). Let Ta =
∑
i∈Na

ui(a) be



the total utility of each of these voters. Note that for a committee S ⊆ S∗, sw(S) >
∑
a∈S∩S∗ Ta. Using this, we have that

ES∼D[sw(S)p] =
∑

S∈Pk(C)

Pr
S∼D

[S] · sw(S)p

>
∑

S∈Pk(C)

Pr
S∼D

[S]

( ∑
a∈S∩S∗

Ta

)p
>

∑
S∈Pk(C)

Pr
S∼D

[S] ·
∑

a∈S∩S∗
(Ta)p

=
∑
a∈S∗

pa · (Ta)p

>
∑
a∈S∗

1/2 · k/m · (Ta)p

= 1/2 · k/m ·
∑
a∈S∗

(Ta)p

> 1/2 · k/m · 1/kp−1 ·

(∑
a∈S∗

Ta

)p
=

1

2 ·m · kp−2
· sw(S∗)p.

This implies the 2mkp−2 distortion.
Next, define

τ = 4 ·max

(
H

1
p+1

t k
p−1
p+1m−

p
p+1 , 1/t

)
.

Case 1: sw(S∗) 6 n · τ . Let Dk be the uniform distribution over committees of size k. Note that since in the Harmonic rule
we pick uniformly at random with probability 1/2,

ES∼D[sw(S)p] > 1/2 · ES∼Dk [sw(S)p]

> 1/2 · ES∼D1 [sw(S)p]

> 1/2 · ES∼D1 [sw(S)]p

> 1/2 · (n/m)p

where the second to last inequality holds by Jenson’s inequality. Hence, the distortion is at most

2(mτ)p 6 2 ·
(

4 ·max

(
H

1
p+1

t k
p−1
p+1m

1
p+1 ,m/t

))p
= 2 · 4p ·max

(
(mHtk

p−1)
p

p+1 , (m/t)p
)
,

as needed.
Case 2: Suppose sw(S∗) > n · τ . We begin by distinguishing between candidates in S∗ that have very high score and

those that do not. In particular, we partition S∗ = SL ∪ SH where SH = {a ∈ S∗ | k · hsct(a)∑
c∈C hsct(a) > 1} and SL = {a ∈

S∗ |k · hsct(a)∑
c∈C hsct(a) < 1}. This is exactly the threshold for which a candidate will be chosen with probability 1 when we weight

by scores. So, for a ∈ SH , pa > 1/2, and for a ∈ SL, pa > 1/2 · hsct(a)∑
c∈C hsct(a) > hsct(a)

2·n·Ht
.

Next, let H = {i ∈ V | ui(SH) = ui(S
∗)} and let R = V \ H . In other words, H is the set of voters who have a

favorite S∗ candidate in SH (there may be ties for their favorite S∗ candidate, but at least one is in SH ). For a set T ⊆ V , let
swT (S) =

∑
i∈T ui(S) be the social welfare of voters in T . Note that swH(S∗) + swR(S∗) = sw(S∗). We now split into two

subcases depending on whether swH(S∗) > sw(S∗)/2 or swR(S∗) > sw(S∗)/2. The first is relatively straightforward.
Subcase 2.1: Suppose swH(S∗) > 1/2 · sw(S∗). Note that

sw(SH) > swH(SH) = swH(S∗) > 1/2 · sw(S∗).

Further, with probability 1/2, D chooses a committee that contains SH . Hence, the p’th moment expected social welfare is at
least 1/2 · sw(S∗/2)p. Hence, the distortion is at most

2p+1 6 2 · 4p 6 2 · 4p ·max
(

(mHtk
p−1)

p
p+1 , (m/t)p

)
,



as needed.
Subcase 2.2: Suppose swR(S∗) > sw(S∗)/2 (and it is still the case that sw(S∗) > n · τ ). This implies that swR(S∗) >

sw(S∗)/2 > n · τ/2. Next, note that all voters i ∈ R have ui(SH) < ui(S
∗). This implies that ui(SL) = ui(S

∗), so we have
that

swR(SL) = swR(S∗) > n · τ/2 > 2 · n/t.
For each a ∈ SL, let Na denote the subset of voters in R who rank a in their top-t above all other candidates in SL, i.e.,

Na = {i ∈ R | ∀b ∈ SL \ {a}, a �i b}.

Let Ta denote the total utility that voters in Na have for alternative a, i.e., Ta =
∑
i∈Na

ui(a). For all a ∈ A, we have that
hsct(a) > Ta because ui(a) 6 1/σi(a) and a is in their top t rankings.

Note that although the Nas are disjoint, unlike in the complete ranking case, they do not cover all voters, so do not form
a partition. This is because it is possible for a voter in R to rank none of the candidates in SL in their top t. Let U =
R \

(⋃
a∈SL Na

)
be the uncovered voters in R. We have that {U} ∪ {Na}a∈SL do in fact form a partition of R. Further, for

each i ∈ U , ui(SL) 6 1/t because they do not rank any of the candidates in SL in their top t. This implies that

swU (SL) 6 n/t = 1/2 · (2n/t) 6 swR(SL)/2.

Hence, voters in R \ U account for more than half of the social welfare of SL in R, so∑
a∈SL

Ta > swR(SL)/2 = swR(S∗)/2 > sw(S∗)/4.

We now have that

ES∼D[sw(S)p] > ES∼D

[(∑
a∈SL

swNa
(S)

)p]

> ES∼D

[∑
a∈SL

swNa
(S)p

]
>
∑
a∈SL

ES∼D[swNa(S)p]

>
∑
a∈SL

pa · (Ta)p

>
k

2 · n ·Ht

∑
a∈SL

(Ta)p+1

>
1

2 · n ·Ht · kp−1

(∑
a∈SL

Ta

)p+1

>
1

2 · n ·Ht · kp−1
(sw(S∗)/4)

p+1

=
sw(S∗)p+1

32 · n ·Ht · (4k)p−1
.

Finally, let us consider the ratio

sw(S∗)p

ES∼D[sw(S)p]
6

32 · n ·Ht · (4k)p−1 · sw(S∗)p

sw(S∗)p+1

=
32 · n ·Ht · (4k)p−1

sw(S∗)

6
32 ·Ht · (4k)p−1

τ

as needed.



B.3 Proof of Theorem 6

Proof. Assume we have n = m!
(m−t)! voters, one for each permutation of t out of m candidates. Fix the voting rule f and let

a be the candidate with the minimum probability of being selected in the committee. Let this probability be pf (a) 6 k/m.
Suppose that a appears in the top t + 1 preferences of all the voters. Furthermore, voters who rank a as their top choice have
utility 1 for a and zero for other candidates, and all other voters have utility 1/(t+ 1) for their top t+ 1 candidates.

In this scenario, the social welfare of a committee S that includes a is:

sw(S) =
1

m
· 1 +

m− 1

m
· 1

t+ 1
=

m+ t

m(t+ 1)
,

and the social welfare of a committee S′ that does not includes a is at most:

sw(S′) 6
kt

m
· 1

t+ 1
=

kt

m(t+ 1)
.

For the p-th moment distortion of f we have:

distp(f) >
sw(S)p

k
m sw(S)p + m−k

m sw(S′)p

>

(
m+t
m(t+1)

)p
k
m

(
m+t
m(t+1)

)p
+ m−k

m

(
kt

m(t+1)

)p
>

m (m+ t)
p

k (m+ t)
p

+ (m− k)kptp

> min

(
m

2k
,
m(m+ t)p

2kptp

)
.

B.4 Proof of Theorem 7

Proof. Fix a voting rule f . Assume we have n = m voters, one for each candidate. We index these voters by the candidates
{ia}a∈C . We construct a set of rankings σ as follows. Each voter ia ranks candidate a first and the rest of the candidates
arbitrarily. Let D = f(σ) be the distribution over candidates returned by f .

The utilities will be chosen such that there is an optimal committee S∗ (that we will later choose depending on D). For all
voters ia with a ∈ S∗, ua(a) = 1 and ua(c) = 0 for all c 6= a. For all remaining voters ia with a /∈ S∗, ua(c) = 1/m for all
candidates c ∈ C. This allows us to pin down the social welfare for any specific committee S, which depends only on |S ∩S∗|.
Indeed, we know that the |S ∩S∗| voters {ia ∈ V | a ∈ S ∩S∗} receive utility 1, the k− |S ∩S∗| voters {ia ∈ V | a ∈ S∗ \S}
receive utility 0, and the remaining m−k voters {ia ∈ V |a /∈ S∗} receive utility 1/m. Hence, the p’th moment social welfare
of S is (|S ∩ S∗|+ (m− k)/m)p. In particular, the p’th moment social welfare of the optimal committee S∗ is (k + m−k

m )p.

We now show how to choose S∗. For each S ∈ Pk(C), let

g(S) =

k∑
h=0

Pr
S′∼D

[|S ∩ S′| = h] ·
(
h+

m− k
m

)p
.

Note that g(S) exactly captures the social welfare of D if the optimal committee is S. We now show there is some S for which



g is not too large. This will follow from an averaging argument. We have that

1(
m
k

) · ∑
S∈Pk(C)

g(S) =
1(
m
k

) · ∑
S∈Pk(C)

k∑
h=0

Pr
S′∼D

[|S ∩ S′| = h] ·
(
h+

m− k
m

)p

=
1(
m
k

) · ∑
S∈Pk(C)

k∑
h=0

∑
S′∈Pk(C)

Pr
S′∼D

[S′] · I[|S ∩ S′| = h] ·
(
h+

m− k
m

)p

=
1(
m
k

) · ∑
S′∈Pk(C)

k∑
h=0

∑
S∈Pk(C)

Pr
S′∼D

[S′] · I[|S ∩ S′| = h] ·
(
h+

m− k
m

)p

=
1(
m
k

) · ∑
S′∈Pk(C)

Pr
S′∼D

[S′] ·
k∑
h=0

(
h+

m− k
m

)p
·
∑

S∈Pk(C)

I[|S ∩ S′| = h]

=
1(
m
k

) · ∑
S′∈Pk(C)

Pr
S′∼D

[S′] ·
k∑
h=0

(
h+

m− k
m

)p
· |{S ∈ Pk(C) | S′ ∩ S = h}| .

Note that for any fixed S′ ∈ Pk(C), |{S ∈ Pk(C) | S′ ∩ S = h}| =
(
k
h

)
·
(
m−k
k−h

)
. For our purposes, we will never need this

value exactly. We simply need to use the fact that it depends only on h (and m and k which we take as fixed for the instance),
and not S′. Let Th =

(
k
h

)
·
(
m−k
k−h

)
. The value Th can be described in the following way: If you fix a subset set S∗ ⊆ m of size

k, Th is the number of sets of subsets of size k that intersect S∗ on exactly h elements. The above has shown that

1(
m
k

) · ∑
S∈Pk(C)

g(S) =
1(
m
k

) · ∑
S′∈Pk(C)

Pr
S∼D

[S′] ·
k∑
h=0

Th ·
(
h+

m− k
m

)p

=
1(
m
k

) · k∑
h=0

Th ·
(
h+

m− k
m

)p
·
∑

S′∈Pk(C)

Pr
S′∼D

[S′]

=
1(
m
k

) · k∑
h=0

Th ·
(
h+

m− k
m

)p

Hence, an averaging argument tells us there is a specific S∗, such that

g(S∗) 6
1(
m
k

) · k∑
h=0

Th ·
(
h+

m− k
m

)p
.

We take this to be our S∗. Note that this implies that

distp(f) >
(k + m−k

m )p

g(S∗)
>

(k + m−k
m )p

1

(m
k )
·
∑k
h=0 Th ·

(
h+ m−k

m

)p .

The remainder of this proof will lower bound this right hand side.



First, we have that

(k + m−k
m )p

1

(m
k )
·
∑k
h=0 Th ·

(
h+ m−k

m

)p =
(k + m−k

m )p∑k
h=0

Th

(m
k )
·
(
h+ m−k

m

)p
=

1∑k
h=0

Th

(m
k )
·
(
h+ m−k

m

k+ m−k
m

)p
>

1∑k
h=0

Th

(m
k )
·
(
h+1
k+1

)p
=

(k + 1)p∑k
h=0

Th

(m
k )
· (h+ 1)

p
.

Next, recall that by the definition of Th,
∑k
h=0 Th =

(
m
k

)
. Hence, the value Th

(m
k )

form a pmf of a probability distribution,

D′. This distribution D′ is the distribution over values {0, · · · , k} where if we fix a subset S∗ ⊆ C of size k, PrD′ [h] is the
probability of a subset of size k chosen uniformly at random intersects S∗ on exactly h elements. Suppose we bound the tail of
D′ such that for a value c with 0 < c < k, Pr[D′ > c] 6 α. We will then have the following:

(k + 1)p∑k
h=0

Th

(m
k )
· (h+ 1)

p
=

(k + 1)p∑dce−1
h=0

Th

(m
k )
· (h+ 1)

p
+
∑k
h=dce

Th

(m
k )
· (h+ 1)

p

>
(k + 1)p∑dce−1

h=0
Th

(m
k )
· dcep +

∑k
h=dce

Th

(m
k )
· (k + 1)

p

=
(k + 1)p

(c+ 1)p ·
∑dce−1
h=0

Th

(m
k )

+ (k + 1)
p∑k

h=dce
Th

(m
k )

=
(k + 1)p

(c+ 1)p · Pr[D′ < c] + (k + 1)
p

Pr[D′ > c]

>
(k + 1)p

(c+ 1)p + (k + 1)
p · α

>
(k + 1)p

2 max ((c+ 1)p, (k + 1)
p · α)

=
1

2
·min

((
k + 1

c+ 1

)p
,

1

α

)
.

We now find a relationship between c and α as needed above. The first observation we will use is that D′ is stochastically
dominated by a Binomial

(
k, k

m−k

)
random variable. This follows from a straightforward coupling argument. The mean of

this binomial distribution is k2

m−k . Hence, a Chernoff bound implies that as long as c > 2 · k2

m−k , then

Pr[D′ > c] 6 Pr

[
Binomial

(
k,

k

m− k

)
> c

]
6 2−c.

This gives us the following condition: for all c > 2 · k2

m−k ,

distp(f) >
1

2
·min

((
k + 1

c+ 1

)p
, 2c
)
.

We now solve for the optimal value of c to maximize this quantity (subject to the constraint). Note that in the min, the left term
is decreasing in c and the right term is increasing in c. Further at c = 0, the left term is larger than the right, and at c = k, the
right is larger than the left. Hence, if there were no constraint on c, the optimal would occur when these two terms are equal.
On the other hand, if this optimal value of c were to be below the constraint 2 · k2

m−k , then the optimal bound would occur at he

boundary c = 2 · k2

m−k , and the left hand side would be smaller.



We now solve for the optimal c. We set (
k + 1

c+ 1

)p
= 2c.

We first rewrite this is (
k + 1

c+ 1

)p
= eln 2·c.

Next, we take both sides of the equation to the 1/p which maintains equality:

k + 1

c+ 1
= e(ln 2/p)·c.

Next, we do a substitution, allowing x = −(ln 2/p) ·(c+1). In particular, c+1 = (−p/ ln 2) ·x and (ln 2/p) ·c = −x− ln 2/p.
Plugging this in above yields

k + 1

(−p/ ln 2) · x
= e−x−ln 2/p

Rearranging yields
(21/p) · ln 2 · (k + 1)

p
= −x · e−x.

This implies that

−x = W

(
(21/p) · ln 2 · (k + 1)

p

)
where W Lambert W function. Hence, the optimal c occurs at

c∗ =
p

ln 2
·W

(
(21/p) · ln 2 · (k + 1)

p

)
− 1.

Hence, if c∗ > 2 · k
2

m , our bound becomes

1/2 · 2c
∗

= 1/4 ·
(
ep·W((21/p)·ln 2· k+1

p )
)
.

When c∗ < 2 · k
2

m , our bound becomes (
k + 1
k2

m−k + 1

)p
=

(
(m− k)(k + 1)

k2 +m− k

)p
.

C Metric Distortion
Let us first introduce the standard model of metric distortion.

C.1 Model
Voter costs: In the metric model, voters and candidates are embedded in an underlying metric space (technically, a pseudo-
metric space) endowed with a distance function d : (V ∪ C)× (V ∪ C) → R>0 satisfying d(x, z) 6 d(x, y) + d(y, z) for all
x, y, z ∈ V ∪ C. Here, we only consider single winner selection. The cost of voter i for candidate c is d(i, c), and the social
cost of candidate c is sc(c, d) =

∑
i∈V d(i, c). An instance in this model is given by the tuple (V,C, d).

Preference profile: Once again, we ask each voter i to submit a ranking over her t most preferred candidates, denoted by a
one-to-one function σi : [t]→ C satisfying d(i, σi(1)) 6 . . . 6 d(i, σi(t)) 6 d(i, c) for all c ∈ C \ σi([t]). As usual, we allow
the voter to break any ties arbitrarily. We still refer to σ = (σ1, . . . , σn) as the preference profile and use d . σ to indicate that
it is induced by the underlying metric d.
Voting rule: A (randomized) voting rule f is defined as in the utilitarian world, which takes a top-t preference profile σ as
input and outputs a distribution over candidates. We say that the rule is deterministic if it always outputs a distribution with
singleton support, in which case we use f(σ) to denote the unique candidate in the support.
Distortion: Once again, we fix the number of candidates m and use I to denote the set of all instances with m candidates.
Fix p ∈ N>0. The p-th moment distortion of voting rule f on an instance I = (V,C, d) is given by

distp(f, I = (V,C, d)) = sup
σ:d.σ

Ec∼f(σ)[(sc(c, d))p]

mina∈C(sc(a, d))p
.

The p-th moment distortion of f is given by distp(f) = supI∈I distp(f, I).



C.2 Results
Let V c be the set of voters that have c as their top choice.
Theorem 8. For any voting rule f we have:

distp(f) ∈ Ω

((m
t

)p−1
)
.

Proof. Divide candidates into m/t clusters of size t. For each cluster, nt/m of the voters rank the members of this cluster
in their top t choice. For every voting rule, there exists a cluster that with probability at least 1/m one of its members is the
winner. Let this cluster be S∗(f) and the voters that have these candidates as their top choice be V ∗(f).

Consider an instance where member of S∗(f) are located at point x1, members of V ∗(f) are located at point x2, and all
other voters and candidates are located at x3 where d(x1, x2) = 1− ε, d(x2, x3) = 1 + ε, and d(x1, x3) = 2.

The social cost of members of S∗(f) is nt(1−ε)/m+2n(m− t)/m, and the social cost of other candidates is nt(1+ε)/m.
When ε→ 0, for the d-th moment distortion of this rule we have:

distp(f) =
t
m (n(2m−t)

m )p + m−t
m (ntm )p

(ntm )p
=

t

m

(
2m− t
t

)p
+
m− t
m

∈ Ω

((m
t

)p−1
)
.

Remark 1. Using the deterministic rule with distortionm/t [Kempe, 2020b], we can achieve d-th moment distortion of (m/t)p.
Lemma 1. For each candidate c ∈ C we have:

sc(c, d) >
1

2

∑
c′∈C
|V c

′
| · d(c, c′).

Lemma 2. Considering a voting rule f , for the p-th moment distortion of f we have:

distp(f, I = (V,C, d)) 6 2p + 4p max
c∈C

pf (c) · (n− |V c|)p

|V c|p
],

where pf (c) is the probability of f choosing c on this instance. In other words, if we define sf (x) to be the maximum probability
of f choosing as winner a candidate that is the top choice of at most x fraction of the voters, then we have:

distp(f) 6 2p + 4p max
x

[sf (x)
(1− x)p

xp
].

Proof. Let c∗ be the optimal candidate. We have

distp(f) =

∑
c∈C pf (c)

(∑
i∈V d(c, i)

)p(∑
i∈V d(c∗, i)

)p
6

∑
c∈C pf (c)

(∑
i∈V c�c∗ d(c∗, i) +

∑
i∈V−V c�c∗ d(c∗, i) + d(c∗, c)

)p(∑
i∈V d(c∗, i)

)p
6

∑
c∈C pf (c) (sc(c∗) + (n− |V c|)d(c∗, c))

p(∑
i∈V d(c∗, i)

)p
6 2p + 2p

∑
c∈C pf (c)(n− |V c|)pd(c∗, c)p(

1
2

∑
c∈C |V c| · d(c∗, c)

)p
6 2p + 2p

∑
c∈C pf (c)(n− |V c|)pd(c∗, c)p

1
2p

∑
c∈C |V c|p · d(c∗, c)p

6 2p + 4p max
c∈C

pf (c)
(n− |V c|)p

|V c|p

Theorem 9. The voting rule that picks each candidate c with probability proportional to the p-th power of its plurality score
has p-th moment distortion O

(
mp−1

)
.

Proof. Consider a candidate that is the top choice of x portion of the voters. The maximum probability for this candidate to
win the election is xp

m( 1
m )p

. By Lemma 2, we have:

distp(f) 6 2p + 4p max
x

[xpmp−1 (1− x)p

xp
] 6 2p + 4p ·mp−1.
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